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Abstract—Radio map estimation (RME) aims at providing a
radiofrequency metric, such as the received power strength, at
every location of a geographical region of interest by relying
on measurements acquired at multiple positions. Although a
large number of estimators have been proposed so far, their
performance has been analyzed mostly on simulated data. The
theoretical aspects of the RME problem as well as performance
bounds remain an open problem. This paper takes a step
towards filling this gap by means of a theoretical analysis of
the RME problem in a free-space propagation environment.
First, the complexity of the estimation problem is quantified
by means of upper bounds on the spatial variability of radio
maps. Second, error bounds are derived for zeroth-order and
first-order interpolation estimators. The proximity coefficient,
which depends proportionally on the transmitted power and
inversely proportionally on the cube of the distance from the
transmitters to the mapped region, is proposed to quantify the
complexity of the RME problem. One of the main findings is that
the error of the considered estimators is roughly proportional to
this proximity coefficient. Simple numerical experiments verify
the tightness of the obtained bounds.

Index Terms—Radio map estimation, spectrum cartography.

I. INTRODUCTION

Radio maps provide a radio frequency (RF) metric of
interest across a geographical region [1]. For example, in
power maps, which constitute a prominent example of radio
maps, the metric of interest is the power that a sensor would
measure when placed at each location. An example of power
map constructed with real data is shown in Fig. 1. Other
examples of RF metrics include the received power spectral
density (PSD), outage probability, and channel gain.

Radio maps are of interest in a large number of applications
such as cellular communications, device-to-device commu-
nications, network planning, frequency planning, robot path
planning, dynamic spectrum access, aerial traffic management
in unmanned aerial systems, fingerprinting localization, and so
on; see references in [1]. One of the most important applica-
tions of power maps is to determine how the coverage of a
cellular or broadcast network can be improved by deploying
new base stations or relays, either terrestrial or aerial [2]–[4].

In radio map estimation (RME), a radio map is constructed
using a set of measurements collected across the area of
interest. A large number of estimators have been proposed
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in the literature, mostly based on some form of interpolation
or regression. By far, power maps are the radio maps that
garnered most interest. One of the simplest kinds of estimators
relies on kernel-based learning (see [5] and references therein),
which overcome the limitations of (the simpler) parametric
estimators [1, Sec. ”Linear Parametric RME”]. Other popular
estimators are based on Kriging [6]–[8], sparsity-based infer-
ence [9]–[11], matrix completion [12], [13], and dictionary
learning [14]. The most recent trend capitalizes on deep neural
networks; see e.g. [15]–[18]. Note that the aforementioned list
of works is not exhaustive due to space limitations. For a more
comprehensive list of references, see [1].

Despite the large volume of research in this area, the vast
majority of works adhere to a common profile: they propose an
estimator and validate it with synthetic data generated using
a statistical propagation model or with ray-tracing software.
A small number of works utilize also real data [19]–[23].
However, no theoretical analysis on the fundamental aspects of
the RME problem as well as on the performance of estimation
algorithms has been carried out. Indeed, the most related work
in this context is two-fold. On the one hand, the estimation
error of some schemes can be derived if the field of interest
adheres to a certain model [8], [15]. However, these models are
generic, not necessarily accurate for radio maps. On the other
hand, the wave theory of information (WTI) studied the prob-
lem of reconstructing the electromagnetic field across space
and time using arrays of synchronized sensors [24]. Nonethe-
less, this problem is fundamentally different from RME, where
sensors are not typically synchronized, the metrics of interest
involve temporal averages of the electromagnetic field, and the
targeted spatial resolution is much lower.

This paper takes a step to address this gap by means of a
quantitative analysis of the RME problem. In particular, the
difficulty of the RME problem is first assessed by analyzing
the spatial variability of power maps in free space. An impor-
tant finding in this context is that power maps in free space are
low-pass, with most of their energy concentrated at low spatial
frequencies. This justifies assuming that power maps in free
space change smoothly and calls for estimators along the lines
of those in [24, Ch. 8]. Second, the estimation performance
of zeroth- and first-order interpolators is quantified in terms
of their L1, L2, and L∞ error. All these bounds turn out
to be proportional to a quantity referred to as the proximity
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Fig. 1: Example of power map where a spatially dense set
of measurements was collected using an unmanned aerial
vehicle [19].

coefficient, which is directly proportional to the transmitted
power and inversely proportional to the cube of the distance
from the transmitters to the mapped region. As a result, the
analysis reveals that a larger spatial density of measurements
is required when the sources are close to the mapped region.

The rest of the paper is structured as follows. Sec. II
formulates the RME problem. Sec. III analyzes the spatial
variability of power maps. Sec. IV derives error bounds for
zeroth- and first-order interpolators. Finally, Sec. V presents
numerical experiments and Sec. VI concludes the paper. Due
to lack of space, all proofs are in the appendices, which were
posted in [25].

Notation: N is the set of natural numbers whereas R is the
field of real numbers. Boldface lowercase (uppercase) letters
denote column vectors (matrices). Vertical concatenation is
represented with a semicolon, e.g. [a; b]. A function f is
represented by a letter, whereas the result of evaluating such
a function at a point x is denoted as f(x).

II. PROBLEM FORMULATION

This section formulates the problem of estimating a power
map. Let R ⊂ R3 comprise the Cartesian coordinates of all
points in the geographic area of interest. A set of S sources
(also referred to as transmitters) in a region V ⊂ R3 produce
an aggregate electric field e(r, t) ∈ R3 at every point r ∈ R,
where t denotes time.

Neglecting for simplicity polarization effects and modeling
e(r, t) as a wide-sense stationary random process over t
for all r, the power of the signal received by a sensor
with an isotropic antenna at r ∈ R depends only on the
spatial coordinate r and can be represented by a function
γ : R → R+. Function γ, which therefore indicates how
radiated power spreads across space, is a special case of a
radio map termed power map. It depends on the transmitted
signals, their locations, and the propagation environment.

The problem is to estimate a power map given a collection
of power measurements in R. Specifically, let γ1, . . . , γN de-

note the power measured at a set of locations {r1, . . . , rN} ⊂
R. For the ensuing analysis, it is not relevant whether each
measurement is collected by a different sensor or by a small set
of sensors that move across R so long as all measurements are
collected within a time interval in which the power distribution
across space does not significantly change.

Due to the finite observation time spent by a sensor at rn
to measure the received power, γn does not generally equal
γ(rn). Instead, certain measurement error must be expected.
This is oftentimes expressed as γn = γ(rn) + ζn, where ζn
is the measurement error.

The RME estimation problem considered here can be for-
mulated as, given {(rn, γn)}Nn=1, estimate the function γ or,
equivalently, the values γ(r) for all r ∈ R. The map estimate
will be denoted as γ̂. Observe that, in this formulation, no
information is given about the propagation environment, the
positions of the sources, the transmitted power, the radiation
pattern of the transmit antennas, etc. This is why most esti-
mators in the literature are based on interpolation algorithms
rather than on electromagnetic propagation models. A detailed
taxonomy of these estimators along with relevant references
can be found in [1].

III. SPATIAL VARIABILITY OF RADIO MAPS

This section characterizes the variability of γ across space.
The results presented here are of interest on their own and
are also used to derive error bounds for radio map estimators
in Sec. IV. As indicated in Sec. I, the focus in this paper is
on free-space propagation. Analysis in the presence of other
propagation effects will be the subject of future publications.

Recall that Friis’ propagation law establishes that the power
that a terminal at r receives from a transmitter at r̄ when
propagation takes place in free space is given by

γ(r) = P TxGTxGRx

[
λ

4π∥r − r̄∥

]2
, (1)

where λ is the wavelength, P Tx is the transmitted power, GTx
is the antenna gain of the transmitter, and GRx is the antenna
gain of the receiver. Suppose for simplicity that both terminals
use isotropic antennas, i.e. GTx = GRx = 1. Upon letting
α := P Tx(λ/4π)

2, expression (1) reduces to

γ(r) =
α

∥r − r̄∥2
. (2)

Observe that, as per (2), γ(r) → +∞ as r → r̄, which is not
physically possible. The reason for this disagreement between
(2) and reality is that (2) is an approximation valid only in
the far field, i.e., when ∥r − r̄∥ is significantly larger than
λ. Thus, it will be required throughout that ∥r − r̄∥ ≥ ηmin,
where ηmin is a constant sufficiently larger than λ.

In the presence of multiple sources that transmit uncor-
related1 signals, the individual contributions of each one to

1This assumption excludes setups with coordinated multipoint or with
multiantenna transmitters that use space-time coding or beamforming.



the total received power add up and, therefore, the set of all
possible power maps is given by

ΓFS =

{
γ : R → R+ | γ(r) =

S∑
s=1

αs

∥r − r̄s∥2
,

r̄s ∈ V, αs ≥ 0, S ∈ N
}
, (3)

where S denotes the number of sources and r̄s is the location
of the s-th source. Due to the minimum distance assumption
introduced earlier, it is required that V is such that dmin(r) :=
inf{∥r − r̄∥ | r̄ ∈ V} ≥ ηmin∀r ∈ R.

The maps in (3) are functions of three spatial coordinates.
However, most works in the literature consider restrictions of
such maps to two or one spatial dimensions. This is because
the case of two spatial dimensions is of interest when users are
on the ground, whereas the case of one spatial dimension is
relevant e.g. when one wishes to construct a map along a road
or railway. The case of three spatial dimensions is still rare in
the literature, but it has already been successfully applied to
deploy aerial base stations and aerial relays [2], [4].

Since it is the most insightful case, this work focuses on
analyzing the variability of radio maps in a single spatial
dimension, i.e., when the functions in (3) are restricted to a
line. For the same reason, this approach has also been adopted
in the WTI [24, Ch. 8].

Specifically, consider without loss of generality the line
L := {[rx; ry; rz] ∈ R3 | ry, rz = 0} and suppose that R
is a subset of L. Thus, one can write R = {[rx; ry; rz] | rx ∈
R(1), ry, rz = 0} for some R(1) ⊂ R.

When r = [rx; 0; 0] and r̄ = [r̄x; r̄y; r̄z], (2) becomes

γ(r) =
α

∥r − r̄∥2
=

α

(rx − r̄x)2 + β2 := γ(rx), (4)

where β2 := r̄2y + r̄2z is the squared distance from the source
location to L. Thus, restricting the maps in (3) to L yields

Γ
(1)
FS =

{
γ : R(1) → R+ | γ(rx) =

S∑
s=1

αs

(rx − r̄x,s)2 + β2
s

,

r̄x,s ∈ V(1), β2
s ∈ B(r̄x,s), αs ≥ 0, S ∈ N

}
, (5)

where r̄s = [r̄x,s; r̄y,s; r̄z,s] ∈ V , V(1) corresponds to the
orthogonal projection of V onto L and B(r̄x) := {β2 | ∃r̄ =
[r̄x; r̄y; r̄z] ∈ V : r̄2y + r̄2z = β2} is the set of values of β2

allowed by V for the source location r̄x. Fig. 2 illustrates the
geometric meaning of the main symbols in (5) while Fig. 3
shows an example of a power map in Γ

(1)
FS .

Having formalized the classes of maps under study, the
rest of this section analyzes the variability of the functions
in Γ

(1)
FS . Subsequently, Sec. IV builds upon these results to

derive performance bounds for RME algorithms.

A. Spatial Change Rate of Power Maps

The first is a simple result that upper bounds the first
derivative of power maps.

Fig. 2: Visual depiction of the setup for estimating a power
map in one spatial dimension. This is of interest e.g. when a
map must be estimated along a road.
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Fig. 3: The black curve shows an example of power map in
Γ
(1)
FS where S = 3, [r̄x,1, r̄x,2, r̄x,3] = [1, 5, 8], [β1, β2, β3] =

[1, 3, 2], and [α1, α2, α3] = [1, 3, 3]. The blue lines correspond
to the contribution of each source. Although source s = 1 has
the lowest power, it is closer to L than the other sources and
this results in the largest contribution to γ and its derivative γ′.

Lemma 1: Let γ ∈ Γ
(1)
FS . Then,

|γ′(rx)| ≤
33/2

8

S∑
s=1

αs

β3
s

. (6)

Proof: See [25, Appendix B].
It is worth emphasizing that the bound in Lemma 1 is

tight. It can be seen that equality is attained for a specific
arrangement where all the sources lie on a plane that is
perpendicular to L.

To facilitate the interpretation of (6), recall that αs can be
expressed as αs := P

(s)
Tx (λ/4π)

2, where P
(s)
Tx is the transmit-

ted power of the s-th source. Thus, (6) can be written as

|γ′(rx)| ≤
33/2

128π2
λ2

S∑
s=1

P
(s)
Tx

β3
s

. (7)

Several observations are in order. First, the rate at which power
changes over space increases with the wavelength, which is
consistent with the fact that low-frequencies tend to spread
more evenly across space. Second, this rate decreases cubically
with the distance βs from the sources to L while it increases



linearly with the transmitted power. Thus, the influence of the
distance to the sources is much more significant: reducing βs

by a factor of 2 has the same effect as increasing P
(s)
Tx by

a factor of 8. Third, the fact that the derivative of γ in (4)
decreases to zero as rx becomes arbitrarily further away from
r̄x implies that the largest variability occurs in the vicinity
of sources. By the above considerations, this variability is
largest near the sources that lie close to L. This suggests that
radio map estimators will generally benefit from collecting a
larger number of measurements near sources that are close to
L. Interestingly, this is fully consistent with the WTI, which
predicts that a larger spatial density of sensors is required near
the sources [24, Secs. 8.5.2 and 8.6].

It is also interesting to express (7) after normalization by λ.
In particular, consider the normalized distances řx := rx/λ
and β̌s := βs/λ. The radio map expressed in terms of
řx becomes γ̌(řx) := γ(λrx) and its derivative satisfies
that γ̌′(řx) := dγ̌(řx)/dřx = (dγ(λrx)/drx)(drx/dřx) =
λγ′(λrx). Thus, it follows from (7) that

|γ̌′(řx)| ≤
33/2

128π2

S∑
s=1

P
(s)
Tx

β̌
3

s

. (8)

As expected from general electromagnetic theory, this expres-
sion no longer depends on λ. Thus, the variability of a power
map in the scale of the wavelength is just dependent on the
distance of the sources to L in units of λ. The RME problem
is invariant to scaling both λ and all distances by the same
factor. This means, for instance, that if one decreases λ and
wishes to attain the same estimation performance, the distance
between measurements needs to be decreased by the same
factor. Conversely, for a given set of measurement locations,
the estimation performance will be worse the shorter λ is.

B. Spatial Bandwidth of Power Maps

The rest of the section establishes that radio maps in free
space are approximately lowpass in space. This is not only
theoretically relevant, but it is also important to motivate the
usage of estimators that rely on this property. Such estimators
would go along the lines of what is discussed in [24, Ch. 8]
about the spatial bandwidth of the electromagnetic field itself.

Consider the Fourier transform of γ:

Γ(kx) :=

∫ ∞

−∞
γ(rx)e

−jkxrxdrx, (9)

where kx is the spatial frequency. The following result char-
acterizes the frequency content of γ:

Theorem 1: Let βmin := mins βs, βmax := maxs βs, and
B > 0. The following holds:

|Γ(kx)| ≤

[
π

βmin

S∑
s=1

αs

]
e−βmin|kx| (10a)

∫ ∞

B

|Γ(kx)|2dkx ≤
π2S

∑S
s=1 α

2
s

2β3
min

e−2βminB (10b)∫ ∞

0

|Γ(kx)|2dkx ≥ π2

2

S∑
s=1

α2
s

β3
s

≥
π2

∑S
s=1 α

2
s

2β3
max

. (10c)

Proof: See [25, Appendix C].
Expression (10a) establishes that Γ cannot be high-pass.

More precisely, one can combine (10b) and (10c) to quantify
the fraction of energy of Γ at high frequencies:∫∞

B
|Γ(kx)|2dkx∫∞

0
|Γ(kx)|2dkx

≤ S

[
βmax

βmin

]3
e−2βminB . (11a)

This shows that the energy of Γ is concentrated at low frequen-
cies. Furthermore, this concentration becomes exponentially
more pronounced as B increases. Besides, by increasing βmin,
the concentration of the energy of Γ at low frequencies rapidly
grows. Finally, it is also worth pointing out that the WTI also
uses the relation between the counterparts of βmin and βmax
therein to quantify the complexity of the field through a notion
of spatial bandwidth [24, Eq. (8.75)].

IV. RECONSTRUCTION ERROR BOUNDS

This section analyzes the reconstruction performance of two
simple radio map estimators. The analysis for more sophisti-
cated algorithms is omitted here due to space limitations but
will be published subsequently.

The reconstruction error has multiple components. One
is due to the specific variability of radio maps, which was
quantified in Sec. III. Another is due to measurement noise
and occurs in any interpolation problem. To focus on the
first component, it will be assumed that ζn = 0 for all n.
Thus, to summarize, the problem is to reconstruct γ given
{(rn, γn)}Nn=1, where γn = γ(rn). For notational simplicity,
it will be further assumed that the measurement locations
R̃ := {rn}Nn=1 are sorted so that rn < rn+1 for all n.

The performance metrics to be investigated are the conven-
tional L1 and L2 norms used in Lebesgue spaces as well as
the L∞ norm used in spaces of continuous bounded functions:

∥γ − γ̂∥1 :=

∫ rN

r1

|γ(rx)− γ̂(rx)|drx (12a)

∥γ − γ̂∥22 :=

∫ rN

r1

|γ(rx)− γ̂(rx)|2drx (12b)

∥γ − γ̂∥∞ := sup
rx∈[r1,rN ]

|γ(rx)− γ̂(rx)|. (12c)

In this case, the integrals can be thought of as Riemann
integrals since both γ and γ̂ are continuous.

Remarkably, all bounds will be seen to be increasing func-
tions of the following quantity, which will be referred to as
the proximity coefficient:

ρ :=

S∑
s=1

αs

β3
s

=

(
λ

4π

)2 S∑
s=1

P
(s)
Tx

β3
s

. (13)

In view of this weighted sum of the terms 1/β3
s, one will be

able to conclude that estimation performance will be poor if
relatively strong sources are near the mapped region.
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Fig. 4: Error metrics along with their upper bounds (15a)-(15c)
for the zeroth-order interpolation estimator (14).

A. Zeroth-Order Interpolation

The zeroth-order interpolator considered here is the nearest-
neighbor estimator, which produces

γ̂(rx) := γn, where n = argmin
n′

|rx − rn′ |. (14)

Theorem 2: With γ̂ as in (14) and ∆rn := rn+1 − rn,

∥γ − γ̂∥1 ≤ 3
√
3

32
ρ

N−1∑
n=1

∆r2n (15a)

∥γ − γ̂∥2 ≤ 3

16
ρ

√√√√N−1∑
n=1

∆r3n (15b)

∥γ − γ̂∥∞ ≤ 33/2

16
ρmax

n
∆rn. (15c)

Proof: See [25, Appendix D].
First, observe that the error becomes 0 if ∆rn → 0 ∀n.

This is expected since both γ and γ̂ are continuous around
rx = rn, where they agree. Second, all the metrics depend on
the quantities defining the map (wavelength, transmit power,
and source position) only through the proximity coefficient ρ,
which therefore summarizes these magnitudes effectively.

Applying Parseval’s theorem to (10c) yields

∥γ∥22 :=

∫ ∞

−∞
|γ(rx)|2drx (16a)

=
1

π

∫ ∞

0

|Γ(kx)|2dkx ≥ π

2

S∑
s=1

α2
s

β3
s

. (16b)

The relative error can therefore be upper bounded as

∥γ − γ̂∥22
∥γ∥22

≤ 9

128π

[∑S
s=1

αs

β3
s

]2
∑S

s=1
α2

s

β3
s

N−1∑
n=1

∆r3n. (17)

Interestingly, if αs = α ∀s and βs = β ∀s, then the relative
error bound becomes

∥γ − γ̂∥22
∥γ∥22

≤ S
9

128π

N−1∑
n=1

[
∆rn
β

]3
. (18)
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Fig. 5: Error metrics along with their upper bounds (20a)-(20c)
for the first-order interpolation estimator (19).

This again suggests that, the closer the sources are to L,
the smaller the sample spacing ∆rn necessary for a target
relative error. It is also remarkable that (18) does not depend
on the transmitted power in this simple scenario. In fact, αs

(equivalently P
(s)
Tx ) can be thought of as a factor in (17) that

weights the impact of each βs to the error.

B. First-order Interpolation

The considered first-order interpolator is the linear interpo-
lator returning a function on [r1, rN ) that takes the values

γ̂(rx) :=
∆γn

∆rn
(rx − rn) + γn, (19)

where ∆γn := γ(rn+1) − γ(rn), ∆rn := rn+1 − rn, and n
is the only integer such that rx ∈ [rn, rn+1).

Theorem 3: The estimator γ̂ defined in (19) satisfies:

∥γ − γ̂∥1 ≤ 27
√
3

256
ρ

N−1∑
n=1

∆r2n (20a)

∥γ − γ̂∥2 ≤

√
144

√
2− 117

2048
ρ

√√√√N−1∑
n=1

∆r3n (20b)

∥γ − γ̂∥∞ ≤ 33/2

16
ρmax

n
∆rn. (20c)

Proof: See [25, Appendix E].
Observe that the bounds in Theorem 3 are the same as in

Theorem 2 except for their multiplicative factors. Therefore,
similar considerations to those in Sec. IV-A apply here as
well. However, contrary to what was expected, the constants in
Theorem 3 are in fact larger than the ones in Theorem 2. This
is because the latter bounds are tighter than the former since
the worst cases implicitly considered therein are more extreme.
Notwithstanding, a more tedious derivation2 is expected to

2The idea would be to enforce continuity and the derivative bound at the
midpoint of each interval [rn, rn+1]. Then, one can maximize the worst-case
error with respect to the value that γ takes at this point. Unfortunately, the
derivation becomes cumbersome due to the large number of cases that must
be considered.



result in upper bounds for first-order interpolation that are
lower than those for zeroth-order interpolation.

V. NUMERICAL EXPERIMENTS

This section empirically corroborates the theoretical find-
ings from Sec. IV and assesses the tightness of the
bounds. To this end, γ ∈ Γ

(1)
FS is generated by plac-

ing 3 transmitters at a distance β from L. Specifically,
γ is defined by λ = 1 and {(r̄x,s, βs, αs)}Ss=1 =
{(1000, β, (4π)2), (5000, β, (4π)2), (8000, β, (4π)2)}, so all
lengths can be thought of as multiples of the wavelength.
The locations of the N = 11 measurements are rn =
(n−1)∆r, n = 1, . . . , N , where ∆r = 1000. Each algorithm
takes these measurements and returns an interpolated function
γ̂, which is evaluated at 1000 uniformly spaced points in the
interval [r1, rN ] to approximate the error metrics in (12).

Figs. 4 and 5 depict these metrics and their upper bounds
in (15) and (20). Observe that the decay rates of the bounds
accurately match the decay rate of the corresponding error
metrics. The bounds are considerably tight: observe for exam-
ple that the upper bounds for the L2 error are lower than the L1

error. As anticipated, the bounds are tighter for zeroth-order
interpolation than for first-order interpolation. However, the
error metrics for the latter are lower than for the former. Thus,
first-order interpolation is preferable in terms of performance.

VI. CONCLUSIONS

The problem of reconstructing a power map produced by a
set of incoherent sources in free space was studied. First, the
variability of a restriction of the map to a straight line was
characterized by upper bounds on its derivative and Fourier
transform. Three function reconstruction error metrics were
upper bounded for estimators based on zeroth- and first-order
interpolation. A simple numerical experiment demonstrates
that the bounds are tight and accurately predict the decrease
rate with respect to the distance of the sources to the mapped
region. This justifies the introduction of the proximity coeffi-
cient, which is proportionally related to all the reconstruction
bounds and indicates that the difficulty of the RME problem
increases linearly with the transmitted power and cubically
with the reciprocal of the distance from the sources to the
mapped region.

Being the first theoretical analysis in this context, it suffers
from several limitations. As a result, future work may address
the estimation of radio maps in higher dimensions and account
for noise, correlation among the transmitters, and propagation
effects such as reflection, refraction, absorption, and diffrac-
tion. Bounds for more sophisticated estimators would also be
of interest. It is thus the hope of the authors that this paper
opens the door to a fertile research topic in this context.
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[13] D. Schäufele, R. L. G. Cavalcante, and S. Mtanczak, “Tensor completion
for radio map reconstruction using low rank and smoothness,” in Proc.
IEEE SPAWC, Cannes, France, Jul. 2019.

[14] S.-J. Kim and G. B. Giannakis, “Cognitive radio spectrum prediction
using dictionary learning,” in Proc. IEEE Global Commun. Conf.,
Atlanta, GA, Dec. 2013, pp. 3206 – 3211.

[15] E. Krijestorac, S. Hanna, and D. Cabric, “Spatial signal strength
prediction using 3D maps and deep learning,” in Proc. IEEE Int Conf.
Commun. IEEE, 2021, pp. 1–6.
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